Oleg V. Levin

el Levin O

Doctor of Chemical Sciences
Professor

This email address is being protected from spambots. You need JavaScript enabled to view it.

tel. 007-812-4286900

Research areas

  • Organic and metalorganic batteries
  • Charge transfer processes in polymer films of metal complexes with Schiff bases
  • Double-layer and hybrid supercapacitors
  • Li-ion batteries

Prof. O. Levin became a permanent member of the department in 2010 after his work as a researcher in Li-ion Battery Department of Samsung SDI Company, South Korea. His research interests are connected with electrochemical power sources and polymeric metal complexes.

The projects carried out in his group are devoted to studies of cathode materials of a new type based on organic and metalorganic compounds. The aim of the research is to create cathode organic material based on π-conjugated polymers modified by functional groups with potentially high capacitance. The fundamental significance of such research is determined with elucidation of charge transfer mechanisms within the films possessing a mixed redox and conjugated conductivity.

He lectures on Electrochemistry for bachelor students and Electrode materials for lithium-ion batteries for master students, conducts laboratory works with students mastered the course of Electrochemistry, and supervises the students’ graduation projects.

Areas of scientific interests

Levin OV

  • chemical power sources
  • conducting polymers
  • intercalation compounds
  • studies of the mechanism of charge transfer processes

Lecture courses

  • Electrochemistry
  • Lithium power sources
  • New trends in electrochemical power sources
  • Photoelectrochemical Conversion of Solar Energy

Scientific research

  • Charge transfer processes in films of polymer complexes of metals with Schiff bases
  • Double-layer and hybrid supercapacitors
  • Lithium-ion power sources

Selected publications

  1. Apraksin R. V et al. Electrochemical synthesis and characterization of poly [Ni(CH3Osalen)] with immobilized poly(styrenesulfonate) anion dopants // Electrochim. Acta. 2021. Vol. 368.
  2. Strelnikov A.A. et al. Switching Competition between Electron and Energy Transfers in Porphyrin-Fullerene Dyads // J. Phys. Chem. B. 2020. Vol. 124, № 48. P. 10899–10912.
  3. Lukyanov D.A., Borisova A.S., Levin O. V. 6,6′-{[ethane-1,2-diylbis(Azaneylylidene)] bis(methaneylylidene)}bis [2-(hexyloxy)phenolato] nickel(ii) // Molbank. 2020. Vol. 2020, № 4. P. 1–5.
  4. Beletskii E. et al. Resistivity-temperature behavior of intrinsically conducting bis(3-methoxysalicylideniminato)nickel polymer // Polymers (Basel). 2020. Vol. 12, № 12. P. 1–10.
  5. Shakirova J.R. et al. Targeted Synthesis of NIR Luminescent Rhenium Diimine cis,trans-[Re(NN)(CO)2(L)2]n+ Complexes Containing N-Donor Axial Ligands: Photophysical, Electrochemical, and Theoretical Studies // Chempluschem. 2020. Vol. 85, № 11. P. 2518–2527.
  6. Chuprun S. et al. Mutually isomeric 2-and 4-(3-nitro-1,2,4-triazol-1yl)pyrimidines inspired by an antimycobacterial screening hit: Synthesis and biological activity against the eskape panel of pathogens // Antibiotics. 2020. Vol. 9, № 10. P. 1–21.
  7. Chepurnaya I.A. et al. Redox-conducting polymers based on metal-salen complexes for energy storage applications // Pure Appl. Chem. 2020. Vol. 92, № 8. P. 1239–1258.
  8. Katlenok E.A. et al. Supramolecular Assembly of Metal Complexes by (Aryl)I⋅⋅⋅dz2 [PtII] Halogen Bonds // Chem. - A Eur. J. 2020. Vol. 26, № 34. P. 7692–7701.
  9. Alekseeva E. et al. Bimetallic Cu/Pt oxygen reduction reaction catalyst for fuel cells cathode materials // Catalysts. 2020. Vol. 10, № 6. P. 1–14.
  10. Beletskii E. V et al. Nickel salicylaldoxime-based coordination polymer as a cathode for lithium-ion batteries // Energies. 2020. Vol. 13, № 10.
  11. Petukhova Y. V et al. Capping agents as a novel approach to control VO2 nanoparticles morphology in hydrothermal process: Mechanism of morphology control and influence on functional properties // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2020. Vol. 255.
  12. Efimenko Z.M. et al. The (Dioximate)NiII/I2 System: Ligand Oxidation and Binding Modes of Triiodide Species // Inorg. Chem. 2020.
  13. Beletskii E. V et al. Overcharge cycling effect on the surface layers and crystalline structure of LiFePO4 cathodes of Li-ion batteries // Energies. 2019. Vol. 12, № 24.
  14. Yang Y. et al. 2020 Roadmap on gas-involved photo- and electro- catalysis // Chinese Chem. Lett. 2019. Vol. 30, № 12. P. 2089–2109.
  15. Stel’mashuk T.A., Alekseeva E. V, Levin O. V. Mixed Platinum–Nickel Catalysts of Oxygen Reduction // Russ. J. Electrochem. 2019. Vol. 55, № 11. P. 1092–1097.
  16. Lukyanov D.A. et al. Synthesis and electrochemical properties of poly(3,4-dihydroxystyrene) and its composites with conducting polymers // Synth. Met. 2019. Vol. 256.
  17. Petukhova Y. V et al. Polymer composites containing dispersed VO2 of various polymorphs: Effects of polymer matrix on functional properties // Mater. Chem. Phys. 2019. Vol. 235.
  18. Yankin A.N. et al. Aryl-Aryl Coupling of Salicylic Aldehydes through Oxidative CH-activation in Nickel Salen Derivatives // ChemistrySelect. 2019. Vol. 4, № 30. P. 8886–8890.
  19. Beletskii E. V et al. The Effect of Electrode Potential on the Conductivity of Polymer Complexes of Nickel with Salen Ligands // Russ. J. Electrochem. 2019. Vol. 55, № 4. P. 339–345.
  20. Samokhvalova S.A. et al. New Bis(salicylideneiminate) Nickel(II) Complexes with Carboxyethylene Linker Connecting Imine Groups and Their Electrochemical Polymerization // Russ. J. Gen. Chem. 2019. Vol. 89, № 4. P. 852–855.
  21. Androsov D. V et al. Photogalvanic eff ect in porphyrin-pyrrolo[3′,4′:1,9]-(C60-I h)[5,6]fullerene-2′,5′-dicarboxylate systems // Russ. Chem. Bull. 2019. Vol. 68, № 4. P. 825–831.
  22. Vereshchagin A.A. et al. Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices // Electrochim. Acta. 2019. Vol. 295. P. 1075–1084.
  23. Lukyanov D.A. et al. Novel homogeneous photocatalyst for oxygen to hydrogen peroxide reduction in aqueous media // Photochem. Photobiol. Sci. 2019. Vol. 18, № 8. P. 1982–1989.
  24. Wang D. et al. Dual-nitrogen-source engineered Fe-Nx moieties as a booster for oxygen electroreduction // J. Mater. Chem. A. 2019. Vol. 7, № 18. P. 11007–11015.
  25. Konev A.S. et al. Polymeric Metal Salen-Type Complexes as Catalysts for Photoelectrocatalytic Hydrogen Peroxide Production // ChemElectroChem. 2018. Vol. 5, № 21. P. 3138–3142.
  26. Lu X. et al. Highly Dispersed Cu−NX Moieties Embedded in Graphene: A Promising Electrocatalyst towards the Oxygen Reduction Reaction // ChemElectroChem. 2018. Vol. 5, № 21. P. 3323–3329.
  27. Novozhilova M. V et al. Oxygen Electroreduction Catalysts Based on Polymer Complexes of Nickel with Schiff Bases // Russ. J. Electrochem. 2018. Vol. 54, № 10. P. 769–774.
  28. Petukhova Y. V et al. Fabrication of composite nanoparticles based on VO2 with given structure and its optical and electrochemical performance // J. Phys. Chem. Solids. 2018. Vol. 121. P. 128–138.
  29. Kuznetsov N. et al. Electrochemical transformations of polymers formed from nickel (II) complexes with salen-type ligands in aqueous alkaline electrolytes // Electrochim. Acta. 2018. Vol. 271. P. 190–202.
  30. Ershov V.A. et al. Effect of Structure of Polymeric Nickel Complexes with Salen-Type Ligands on the Rate of Their Electroactivity Decay in Solutions of Water-Containing Electrolytes // Russ. J. Gen. Chem. 2018. Vol. 88, № 2. P. 277–283.
  31. Alekseeva E. V et al. Dependence of stability of the polymerizesd nickel complexes with schiff bases on the structure of the ligand diimine bridge // ECS Transactions. 2018. Vol. 87, № 1. P. 167–177.
  32. Eliseeva S.N. et al. Nickel-Salen Type Polymers as Cathode Materials for Rechargeable Lithium Batteries // Macromol. Chem. Phys. 2017. Vol. 218, № 24.
  33. Grevtsev A.S., Levin O. V, Tverjanovich A.S. Microwave assisted polyol synthesis of CuGa Se 2 nanoparticles for solar cell application // Funct. Mater. Lett. 2017. Vol. 10, № 4.
  34. Anishchenko D. V, Levin O. V, Malev V. V. Double Layer Structural Effects in Cyclic Voltammetry Curves Complicated with Non-Equilibrium Injection of Charge Carriers into Redox Polymer Films // Electrochim. Acta. 2017. Vol. 241. P. 375–385.
  35. Alekseeva E. V et al. Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties // Electrochim. Acta. 2017. Vol. 225. P. 378–391.
  36. Vereschagin A.A. et al. Water-stable [Ni(salen)]-type electrode material based on phenylazosubstituted salicylic aldehyde imine ligand // New J. Chem. 2017. Vol. 41, № 22. P. 13918–13928.
  37. Novozhilova M. V et al. Synthesis and study of catalysts of electrochemical oxygen reduction reaction based on polymer complexes of nickel and cobalt with Schiff bases // Russ. J. Electrochem. 2016. Vol. 52, № 12. P. 1183–1190.
  38. Vereshchagin A.A. et al. Interaction of amines with electrodes modified by polymeric complexes of Ni with salen-type ligands // Electrochim. Acta. 2016. Vol. 211. P. 726–734.
  39. Konev A.S. et al. Photocurrent in Multilayered Assemblies of Porphyrin-Fullerene Covalent Dyads: Evidence for Channels for Charge Transport // ChemSusChem. 2016. Vol. 9, № 7. P. 676–686.
  40. Anishchenko D. V, Levin O. V, Malev V. V. Quasi-equilibrium voltammetric curves of polaron-conducting polymer films // Electrochim. Acta. 2016. Vol. 188. P. 480–489.
  41. Eliseeva S.N. et al. New functional conducting poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials // Mater. Lett. 2015. Vol. 161. P. 117–119.
  42. Levin O. V, Kuznetsov N.A. Hydrogen evolution reactions on carbon materials potentially useful in double-layer supercapacitors // Russ. J. Gen. Chem. 2015. Vol. 85, № 12. P. 2699–2702.
  43. Smirnova E.A. et al. New functional materials based on conductive polymer—metal complexes modified with metallic nanoelectrodes // Russ. Chem. Bull. 2015. Vol. 64, № 8. P. 1919–1925.
  44. Eliseeva S.N. et al. Effect of addition of a conducting polymer on the properties of the LiFePO4-based cathode material for lithium-ion batteries // Russ. J. Appl. Chem. 2015. Vol. 88, № 7. P. 1146–1149.
  45. Sizov V. V et al. Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study // J. Solid State Electrochem. 2015. Vol. 19, № 2. P. 453–468.
  46. Tolstoy V.P. et al. Direct synthesis of Ni2Al(OH)7-x(NO3)x·nH2O layered double hydroxide nanolayers by SILD and their capacitive performance // Mater. Lett. 2015. Vol. 139. P. 4–6.
  47. Konev A.S. et al. Synthesis of new porphyrin-fullerene dyads capable of forming charge-separated states on a microsecond lifetime scale // Chem. - A Eur. J. 2015. Vol. 21, № 3. P. 1237–1250.
  48. Levin O. V et al. Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components // Int. J. Electrochem. Sci. 2015. Vol. 10, № 10. P. 8175–8189.
  49. Kondratiev V. V, Levin O. V, Malev V. V. Charge transfer and electrochemical reactions at electrodes modified with pristine and metal-containing films of conducting polymers // Advances in Conducting Polymers Research. 2014. 79–151 p.
  50. Malev V. V, Levin O. V, Kondratiev V. V. Voltammetry of electrodes modified with pristine and composite polymer films; Theoretical and experimental aspects to the memory of Prof. Veniamin Levich. // Electrochim. Acta. 2014. Vol. 122. P. 234–246.
  51. Levin O., Kazakov S., Antipov E. Solid energy: A report on the 18th international symposium on the reactivity of solids // Powder Diffr. 2014. Vol. 29, № 4. P. 404–406.
  52. Konev A.S. et al. The implication of 1,3-dipolar cycloaddition of azomethine ylides to the synthesis of main-chain porphyrin oligomers // Macromol. Chem. Phys. 2014. Vol. 215, № 6. P. 516–529.
  53. Malev V. V, Levin O. V, Timonov A.M. Quasi-equilibrium voltammetric curves resulting from the existence of two immobile charge carriers within electroactive polymer films // Electrochim. Acta. 2013. Vol. 108. P. 313–320.
  54. Levin O. V et al. Charge transfer processes on electrodes modified by polymer films ofmetal complexes with Schiff bases // Electrochim. Acta. 2013. Vol. 109. P. 153–161.
  55. Malev V. V, Levin O. V. Criteria of the absence of short-range interactions within electroactive polymer films // Electrochim. Acta. 2012. Vol. 80. P. 426–431.
  56. Malev V. V, Levin O. V. Electrical currents resulting from reduction/oxidation processes of tested particles on “inner” and “outer” surfaces of electroactive polymer films // Russ. J. Electrochem. 2012. Vol. 48, № 4. P. 375–387.
  57. Malev V. V, Levin O. V. Electrical currents resulting from reduction/oxidation processes of tested particles on electrodes modified with metal-containing polymer films // Electrochim. Acta. 2011. Vol. 56, № 10. P. 3586–3596.
  58. Skompska M. et al. Mixed solutions of silver cation and chloride anion in acetonitrile: Voltammetric and EQCM study // Phys. Chem. Chem. Phys. 2010. Vol. 12, № 35. P. 10525–10535.
  59. Malev V. V, Levin O. V. Limiting current to a rotating disk electrode modified with an electroactive polymeric film in the presence of a redox pair in the adjacent solution volume // Russ. J. Electrochem. 2008. Vol. 44, № 1. P. 91–97.
  60. Levin O. V, Kondratiev V. V, Malev V. V. Using the rotating disk electrode for evaluating film porosity of conductive polymers // Russ. J. Electrochem. 2008. Vol. 44, № 1. P. 98–103.
  61. Malev V. V, Levin O. V, Vorotyntsev M.A. Effect of interparticle interactions on the rate of injection of charge carriers into electroactive polymer films // Russ. J. Electrochem. 2007. Vol. 43, № 9. P. 1016–1025.
  62. Malev V. V, Levin O. V, Vorotyntsev M.A. Model treatment of double layer charging in electroactive polymer films with two kinds of charge carriers // Electrochim. Acta. 2006. Vol. 52, № 1. P. 133–151.
  63. Levin O., Kondratiev V., Malev V. Charge transfer processes at poly-o-phenylenediamine and poly-o-aminophenol films // Electrochim. Acta. 2005. Vol. 50, № 7–8. P. 1573–1585.
  64. Levin O. V, Kondrat’ev V. V, Malev V. V. Electrochemical properties of poly-o-phenylenediamine films in solutions with variable concentration of hydronium ions // Russ. J. Electrochem. 2004. Vol. 40, № 1. P. 91–98.
  65. Levin O. V, Kondrat’ev V. V, Malev V. V. Electrochemical properties of poly(o-phenylene diamine) in solutions with variable concentration of hydrogen ions // Elektrokhimiya. 2004. Vol. 40, № 1. P. 106–114.
  66. Kurdakova V. V et al. Cyclic voltammetry and the impedance of electrodes modified by indium(III) hexacyanoferrate films // Russ. J. Electrochem. 2002. Vol. 38, № 11. P. 1192–1199.
  67. Kurdakova V. V et al. Cyclic voltammetry and impedance of electrodes modified with indium(III) hexacyanoferrate films // Elektrokhimiya. 2002. Vol. 38, № 11. P. 1319–1326.