Department of Electrochemistry

Electrode materials for metal-ion batteries, supercapacitors and redox batteries

Group members

Group members

Head of research group — Veniamin V. Kondratiev, Dr. Sci., professor

  • Leading Researcher — Rudolf Holze, professor
  • Ph.D., Associate professor Elena G. Tolstopjatova
  • Ph.D., Associate professor Svetlana N. Eliseeva
  • PhD student Alexey I. Volkov
  • PhD student Mikhail A. Kamenskii
  • Undergraduate student Angelina I. Vypritskaya

Collaboration

  • prof. Gyozo Lang, EotvosLorand University, Budapest, Hungary, Laboratory of Electrochemistry and Electroanalytical Chemistry
  • prof. Anthony J. Killard, North-West University, Bristol, UK, Laboratory of Bioanalytical Electrochemistry
  • prof. Li Niu, Changchun Institute of Applied Chemistry, China, Laboratory of Electroanalytical Chemistry
  • professor, corresponding member of Russian Academy of Sciences, E.V. Antipov, Lomonosov Moscow State University, Moscow
  • prof. A.N. Aleshin, The Ioffe Institute, St. Petersburg
  • prof. D.V. Agafonov, St. Petersburg State Technological Institute (Technical University), St. Petersburg
  • prof. I.Yu. Sapurina, Institute of Macromolecular Compounds, Russian Academy of Science, St. Petersburg
  • prof. A.M. Timonov, Herzen State Pedagogical University of Russia, St. Petersburg

Research

Development of promising electrode materials for metal-ion batteries, supercapacitors and redox batteries.

Our work is aimed at fundamental and applied research in the development of new energy storage materials for chemical power sources. Our aim is to create a basic advanced laboratory in which engineering and scientific tasks for the creation of materials and devices for electrochemical energy storage will be solved.

Experimental and theoretical studies of our group are focused on the development of scientific and technological foundations for the production of new electrode materials for metal-ion and other power sources, the study of the kinetics and mechanism of solid-phase processes of charge transfer in such materials.

The main research is carried out in three areas:

1. Task-oriented design of new electrode materials for lithium-ion batteries with improved functional properties, creation of hybrid organic-inorganic materials based on conducting polymers and rechargeable transition metal compounds (metal oxides, metal complexes) and their testing in lithium-ion battery prototypes. Notable progress has been achieved in the development of new nanostructured materials based on LiFePO4, LiMn0.6Fe0.4PO4 and conducting polymer poly-3,4-ethylenedioxythiophene. Due to the surface modification of grains of active rechargeable materials by a conducting polymer and the introduction of ion-conducting polyelectrolytes, it was possible to obtain cathode materials for lithium-ion batteries with characteristics superior in capacity and rate of charge-discharge processes to those of analogs published to date. This strategy has been patented (RU2584678 "Composite cathode material for lithium-ion batteries"). Research is underway on new anode materials for lithium-ion batteries based on cobalt oxide and molybdenum disulfide, as well as research on materials for sodium-ion batteries based on manganese hexacyanoferrate.

pr1 4

2. Development of new electrode materials for lithium-ion systems based on conducting polymers with covalently linked quinone substituents in the chain and polymer dopant anions with quinone substituents. Composite polymer materials based on conducting polymer poly-3,4-ethylenedioxythiophene with poly(3,4-dihydroxythiolsulfonic) acid anion (PDHS-SO3-) have been investigated. Stoichiometry of redox processes in composites has been studied by EQCM. The kinetics of electrochemical processes has been studied using EIS. In this research direction, a novel method for the synthesis of poly(3,4-dihydroxystyrene) and its sulfonated form was developed and an application was filed for a patent "Anionic polymer containing an ortho-quinone moiety and a method for its production". A new polymer electrode composition based on polythiophene derivatives and poly (3,4-dihydroxystyrene sulfonic) acid derivatives with notable specific capacity and high charge-discharge rates has been created, for which a patent application "Polymer polyquinone-polythiophene compositions for electrochemical power sources" has been filed.

3. Development of materials and prototypes of supercapacitors based on rapidly rechargeable hybrid organo-inorganic materials, consisting of conducting polymers, rechargeable transition metal compounds (metal oxides) and active carbon additives.

As part of the research focused on the development of materials for faradaic supercapacitors, an extensive review of the literature on such materials has been published [L. Fu, Q. Qu, R. Holze, V.V. Kondratiev, Y. Wu, Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrodes: The best of both worlds? // J. Mater. Chem. A 7 (2019) 14937-14970. DOI: 10.1039/C8TA10587A (IF 10.733)], as the basis for the selection of new promising systems and the development of approaches to their study.

Ongoing research is focused at the functional characteristics of hybrid organic-inorganic materials for supercapacitors based on rechargeable transition metal compounds (tungsten oxides, double oxides of cobalt and nickel, molybdenum disulfide), conducting polymers (poly-3,4-ethylenedioxythiophene) and carbon additives. Metal-polymer nanocomposite materials developed by our group are promising for use in a number of fields of science and technology, in particular, as catalysts for electrochemical processes, as energy-intensive electrode materials for the development of new energy storage devices (batteries, supercapacitors).

In each of these areas, we have our own original approaches that have led to advances in improving the functional characteristics of materials and created promising areas for further research. Students, undergraduates and postgraduates are invited to pursue a successful scientific career in one of the areas of the group.

pr1 1 pr1 2 pr1 3

Selected Publications

Selected recent publications

1. M.A Kamenskii, A.I. Vypritskaya, S.N. Eliseeva, A.I. Volkov, V.V. Kondratiev Enhanced electrochemical properties of Co3O4 anode with PEDOT:PSS/CMC binder // Material Letters, 282 (2021) 128658. DOI: 10.1016/j.matlet.2020.128658

kondratiev1

A superior electrochemical performance of Co3O4 anode with water-soluble binder consisting of a combination of intrinsically conducting polymer poly-3,4-ethylenedioxythiophene/ polystyrene sulfonate (PEDOT:PSS) dispersion and carboxymethyl cellulose (CMC) is presented. This type of electrode material shows ultrahigh capacity value of 1200 mA·h·g-1 which exceeds its theoretical capacity (890 mA·h·g-1). It also demonstrates an excellent stability during continuous cycling at 0.2 C (capacity loss is near 4–5 %) and has no significant capacity fading at high current densities. Long-term cyclic voltammetry measurements show that Co3O4 electrode containing conducting polymer has smaller changes in shape of curves as in the cases of anode materials where polyvinylidene fluoride (PVDF) binder and another water-soluble binder CMC with poly(acrylic acid) (PAA) were used.

2. S.N. Eliseeva, M.A. Kamenskii, E.G. Tolstopyatova, V.V. Kondratiev Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries (Review) // Energies 13 (2020) 2163. DOI: 10.3390/en13092163

kondratiev2kondratiev3

Electronic and ionic transport scheme for individual particles of active material in the media of PVDF and PEDOT:PSS/CMC.

This review provides a summary on the progress of our current research of the effects of conductive binders on the electrochemical properties of intercalation electrodes, with particular attention to the mechanisms of binder effects. The comparative analysis of effects of three different binders (PEDOT:PSS/CMC, CMC, PVDF) for a number of oxide-based and phosphate-based positive and negative electrodes for lithium-ion batteries was performed based on literature and our own published research data. It reveals that the combined PEDOT:PSS/CMC binder can be considered as a versatile component of lithium-ion battery electrode materials (both for positive and negative electrodes), effective in the wide range of electrode potentials.

3. D.V. Zhuzhelskii, E.G. Tolstopjatova, S.N. Eliseeva, A.V. Ivanov, S. Miao, V.V. Kondratiev Electrochemical properties of PEDOT/WO3 composite films for high performance supercapacitor application // Electrochim. Acta 209 (2019) 182-190. DOI: 10.1016/j.electacta.2019.01.007

kondratiev4

Tungsten oxide was electrochemically deposited from a metastable acidic solution of isopolytungstate on glassy carbon electrodes modified with a film of a conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The electrochemical synthesis of PEDOT film and formation PEDOT/WO3 composite film during the electrochemical deposition of tungsten oxide into the polymer matrix were gravimetrically monitored by the electrochemical quartz crystal microbalance (EQCM). The morphology study of PEDOT/WO3 composites showed disperse distribution of WO3 precipitates in the porous matrix of PEDOT, possessing high surface area and pore volume, effective for charge transport. Electrochemical behavior of poly-3,4-ethylenedioxythiophene composites with tungsten oxide (PEDOT/WO3) was investigated in 0.5M H2SO4. Composite films PEDOT/WO3 show very good dynamics of charge transport, almost linear relationship between peak currents and scan rate was observed at least up to 0.4 V/s. It indicates that very fast uptake of H+ ions from the electrolyte to the surface of WO3 takes place during the charge-discharge process. The WO3 component in the PEDOT/WO3 composite electrodes exhibited high specific capacitance of 689 F g-1 in the potential range -0.3 ÷ 0.0 V, related to contribution of tungsten oxide component. The work presents a simple approach for the synthesis of PEDOT/WO3 composite materials with high values of specific capacitance. The obtained results indicate that PEDOT/WO3 composite could be promising electrode material for supercapacitor applications.

Our recent publications

2020

  1. S.N. Eliseeva, M.A. Kamenskii, E.G. Tolstopyatova, V.V. Kondratiev Effect of combined conductive polymer binder on the electrochemical performance of electrode materials for lithium-ion batteries // Energies 13 (2020) 2163. DOI: 10.3390/en13092163
  2. A.I. Volkov, S.N. Eliseeva, E.G. Tolstopjatova, V.V. Kondratiev Enhanced electrochemical performance of MoS2 anode material with novel composite binder // J. Solid State Electrochem. 24 (2020) 1607-1614. DOI: 10.1007/s10008-020-04701-3
  3. D.V. Zhuzhelskii, E.G. Tolstopjatova, A.I. Volkov, S.N. Eliseeva, G.G. Láng, V.V. Kondratiev Insights on the electrodeposition mechanism of tungsten oxide into conducting polymers: Potentiostatic vs. Potentiodynamic deposition // Synthetic Metals 267 (2020) 116469. DOI: 10.1016/j.synthmet.2020.116469
  4. Y. Wu, R. Holze Gibtesgrünen Wasserstoff oder Null-Emissions-Fahrzeuge? // Bunsen-Magazin 22 (2020) 53-56. DOI: 10.26125/5sjf-6166
  5. E.V. Shkreba, R.V. Apraksin, E.G. Tolstopjatova, V.V. Kondratiev Cathode material for sodium-ion batteries based on manganese hexacyanoferrate: the role of the binder component // J. Solid State Electrochem. 2020. DOI: 10.1007/s10008-020-04746-4
  6. S. Gao, L. Yang, J. Shao, Q. Qu, Y. Wu, R. Holze Construction of hierarchical hollow MoS2/carbon microspheres for enhanced lithium storage performance // J. Electrochem. Soc. 167 (2020) 100525. DOI:10.1149/1945-7111/ab98b0
  7. Y. Ge, J. Roscher, R. Holze Increased capacitance of metal oxide-based supercapacitor electrodes caused by surfactant addition to the electrolyte solution // J. Nanosci. Nanotechnol. 20 (2020) 7544-7552. DOI:10.1166/jnn.2020.18589
  8. S. Gao, L. Yang, Z. Liu, J. Shao, Q. Qu, M. Hossain, Y. Wu, P. Adelhelm, R. Holze Carbon-coated SnS nanosheets supported on porous microspheres as negative electrode material for sodium-ion batteries // Energy Technology 8 (2020) 2000258. DOI: 10.1002/ente.202000258
  9. R. Holze, Y. Wu Why do Lithium-Ion-Batteries age? (Warum altern Lithium-Ionen-Batterien?) // Chem. Unserer Zeit 54 (2020) 180-187. DOI: 10.1002/ciuz.201900044
  10. R. Holze Electrochemistry: quo vadis or where should we head to? // J. Solid State Electrochem. 24 (2020) 2087–2088. DOI: 10.1007/s10008-020-04587-1
  11. R. Holze Composites and copolymers containing redox-active molecules and intrinsically conducting polymers as active masses for supercapacitor electrodes— an introduction // Polymers 12 (2020) 1835. DOI: 10.3390/polym12081835
  12. Y. Fu, M. Zheng, Q. Li, L. Zhang, S. Wang, V.V. Kondratiev, B. Jiang Interfacial engineering by creating Cu-based ternary heterostructures on C3N4 tubes towards enhanced photocatalytic oxidative coupling of benzylamines // RSC Adv. (2020) 28059-28065. DOI: 10.1039/d0ra03164j
  13. M.A. Kamenskii, A.I. Vypritskaya, S.N. Eliseeva, A.I. Volkov, V.V. Kondratiev Enhanced electrochemical properties of Co3O4 anode with PEDOT:PSS/CMC binder for lithium-ion batteries // Materials Lett. 282 (2021) 128658. DOI: 10.1016/j.matlet.2020.128658

2019

  1. E.V. Shkreba, S.N. Eliseeva, M.A. Kamenskii, E.G. Tolstopjatova, V.V. Kondratiev, Electrochemical performance of lithium titanate anode fabricated using water-based binder // Mendeleev Comm. 29 (2019) 105-107. DOI: 10.1016/j.mencom.2019.01.036
  2. D.V. Zhuzhelskii, E.G. Tolstopjatova, S.N. Eliseeva, A.V. Ivanov, S. Miao, V.V. Kondratiev Electrochemical properties of PEDOT/WO3 composite films for high performance supercapacitor application // Electrochim. Acta 209 (2019) 182-190. DOI: 10.1016/j.electacta.2019.01.007
  3. D.V. Zhuzhel’skii, E.G. Tolstopyatova, N.E. Kondrat’eva, S.N. Eliseeva, V.V. Kondrat’ev, Effect of electrode material on electrodeposition of tungsten oxide // Russ. J. Applied Chem. 92 (2019) 1006–1012. DOI: 10.1016/j.ssi.2019.01.011
  4. S.N. Eliseeva, E.V. Shkreba, M.A. Kamenskii, E.G. Tolstopjatova, R. Holze, V.V. Kondratiev, Effects of conductive binder on the electrochemical performance of lithium titanate anodes // Solid State Ionics 333 (2019) 18-29. DOI: 10.1016/j.ssi.2019.01.011
  5. L. Fu, Q. Qu, R. Holze, V.V. Kondratiev, Y. Wu Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrodes: The best of both worlds? // J. Mater. Chem. A 7 (2019) 14937-14970. DOI: 10.1039/C8TA10587A
  6. S. Miao, E. G. Tolstopyatova, V. V. Kondratiev, Redox processes involving quinones on poly-3,4-ethylenedioxythiophene-modified glassy carbon surface // Russ. J. General Chem. 89 (2019) 266–270. DOI: 10.1134/S1070363219020166
  7. D.A. Lukyanov, R.V. Apraksin, A.N. Yankin, P.S. Vlasov, O.V. Levin, E.G. Tolstopjatova, V.V. Kondratiev Synthesis and electrochemical properties of poly(3,4-dihydroxystyrene) and its composites with conducting polymers // Synthetic Metals 256 (2019) 116151. DOI: 10.1016/j.synthmet.2019.116151
  8. M.A. Kamenskii, S.N. Eliseeva, E.G. Tolstopjatova, A.I. Volkov, D.V. Zhuzhelskii, V.V. Kondratiev The advantages of mass normalized electrochemical impedance spectra for the determination of the kinetic parameters of LiMn2O4 cathodes // Electrochim. Acta 326 (2019) 134969. DOI: 10.1016/j.electacta.2019.134969
  9. M.A. Kamenskii, V.V. Kondratiev, S.N. Eliseeva, R. Holze, Performance of negative lithium titanate electrodes containing minimized amounts of conducting polymer and modified guar gum as binder // J. Electrochem. Soc. 166 (2019) A3354-A3361 DOI: 10.1149/2.0791914jes
  10. D.V. Zhuzhelskii, E.G. Tolstopjatova, A.I. Volkov, S.N. Eliseeva, V.V. Kondratiev Microgravimetrical study of electrochemical properties of PEDOT/WO3 composite films in diluted sulfuric acid // J. Solid State Electrochem. 23 (2019) 3275–3285. DOI: 10.1007/s10008-019-04432.
  11. M. A. Kamenskii, S. N. Eliseeva, V.V. Kondratiev Effect of long-term cycling on impedance spectra of LiMn2O4-electrodes // ECS Trans. 95 (2019) 121-127. DOI: 10.1149/09501.0121ecst
  12. R. V. Apraksin, S. N. Eliseeva, M. A. Kamenskii, E. G. Tolstopyatova, G. G. Lang, V. V. Kondrat’ev, Impedance of LiFe0.4Mn0.6PO4 electrodes with combined conducting polymer binder of PEDOT:PSS and carboxymethyl cellulose // Russ. J. Electrochem. 55 (2019) 1047–1057. DOI: 10.1134/S1023193519110028
  13. K.J. Szekeres, É. Fekete, M. Ujvári, S. Vesztergom, V.V. Kondratiev, G.G. Láng Some observations on the electrochemical reactions of bisphenol A on polycrystalline gold in contact with 0.1 M aqueous NaClO4 solution // Russ. J. Electrochem. 55 (2019) 1127-1135. DOI: 10.1134/S1023193519110132

2018

  1. G.G. Láng, V. Kondratiev, M. Ujvári, S. Vesztergom, K.Szekeres, D. Zalka Structural changes during the overoxidation of poly(3,4-Ethylenedioxythiophene) films electrodeposited from surfactant-free aqueous solutions. In: K.Wandelt (Ed.) Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 5, Elsevier Inc., 2018, pp. 258–270.
  2. K.A. Vorobeva, S.N. Eliseeva, R.V. Apraksin, M.A. Kamenskii, E.G. Tolstopjatova, V.V. Kondratiev Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder // J. Alloys Compd. 766 (2018) 33-44. DOI: 10.1016/j.jallcom.2018.06.324
  3. D.V. Zhuzhel’skii, K.D. Yalda, V.N. Spiridonov, R.V. Apraksin, V.V. Kondrat’ev Synthesis and special features of electrochemical behavior of tungsten oxide deposited on various substrates // Russ. J. General Chem. 88 (2018) 520-527. DOI: 10.1134/S1070363218030209
  4. M.A. Kamensky, S.N. Eliseeva, G. Láng, M. Ujvári, V.V. Kondratiev Electrochemical properties of overoxidized poly-3,4-ethylenedioxythiophene // Russ. J. Electrochem. 54 (2018) 893–901. DOI: 10.1134/S1023193518130219
  5. A.O. Nizhegorodova, S.N. Eliseeva, E.G. Tolstopjatova, G.G. Láng, D. Zalka, M. Ujvári, V.V. Kondratiev EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes // J. Solid State Electrochem. 22 (2018) 2357–2366. DOI: 10.1007/s10008-018-3950-y

2017

  1. R.V. Apraksin, A.I. Volkov, S.N. Eliseeva, V.V. Kondratiev Influence of addition of lithium salt solution into PEDOT:PSS dispersion on the electrochemical and spectroscopic properties of film electrodes // J. Solid State Electrochem. 21 (2017) 3487-3494.
  2. S. N. Eliseeva, K. A. Vorob’eva, E. V. Shkreba, R. V. Apraksin, V. V. Kondrat’ev Electochemical characteristics of LiMn2O4/Li4Ti5O12 battery with conducting polymeric binder // Russ. J. Applied Chem. 90 (2017) 1230–1233.
  3. S.N. Eliseeva, R.V. Apraksin, E.G. Tolstopjatova, V.V. Kondratiev Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene /polystyrene sulfonate // Electrochimica Acta 227 (2017) 357-366.
  4. D. Zalka, N. Kovács, K. Szekeres, M. Ujvári, S. Vesztergom, S. Eliseeva, V. Kondratiev, G.G. Láng Determination of the charge transfer resistance of poly(3,4-ethylenedioxythiophene)-modified electrodes immediately after overoxidation // Electrochimica Acta 247 (2017) 321-332.
  5. R.V. Apraksin, A.I. Volkov, S.N. Eliseeva, V.V. Kondratiev Influence of addition of lithium salt solution into PEDOT:PSS dispersion on the electrochemical and spectroscopic properties of film electrodes // J. Solid State Electrochem. 21 (2017) 3487-3494.

2016

  1. V.V. Kondratiev, V.V. Malev, S.N. Eliseeva Composite electrode materials based on conducting polymers loaded with metal nanostructures // Russ. Chem. Rev. 85 (2016), 14–37.
  2. R.V. Apraksin, S.N. Eliseeva, E.G. Tolstopjatova, A.M. Rumyantsev, V.V. Zhdanov, V.V. Kondratiev High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene):poly(styrenesulfonate)/ carboxymethylcellulose // Materials Letters 176 (2016) 248–252.
  3. A.I. Volkov, S.N. Eliseeva, E.G. Tolstopjatova, V.V. Kondratiev Š•lectrochemical properties of poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/manganese oxide composite electrode material // J. Solid State Electrochem. 20 (2016) 3209–3212.
  4. G.G. Láng, M. Ujvári, S. Vesztergom, V. Kondratiev, J.Gubicza, K.J. Szekeres The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions // Zeitschrift für Physikalische Chemie 230 (2016) 1281–1302.
  5. A.N. Aleshin, P.S. Krylov, A.S. Berestennikov, V.V. Kondratiev, S.N. Eliseeva The redox nature of the resistive switching in nanocomposite thin films based on graphene (graphene oxide) nanoparticles and poly(9-vinylcarbazole) // Synthetic Metals 217 (2016) 7-13.

2015

  1. A. O. Nizhegorodova, R. V. Apraksin, V. V. Kondratiev Electrochemical Properties of Composite Materials Based on Poly-3,4-Ethylenedioxythiophene with Nickel Oxide Inclusions // Russ. J. Electrochem. 51 (2015) 908-915.
  2. M. Ujvári, J. Gubicza, V. Kondratiev, K. J. Szekeres, G.G. Láng Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation // J. Solid State Electrochem. 19 (2015) 1247–1252.
  3. S.N. Eliseeva, O.V. Levin, E.G. Tolstopjatova, E.V. Alekseeva, R.V. Apraksin, V.V. Kondratiev New functional conducting poly-3,4-ethylenedioxythiopene:polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials // Materials Letters 161 (2015) 117-119.
  4. O.V. Levin, S.N. Eliseeva, E.V. Alekseeva, E.G. Tolstopjatova, V.V. Kondratiev Composite LiFePO4/poly-3,4-ethylenedioxythiophene Cathode for Lithium-Ion Batteries with Low Content of Non-Electroactive Components // Int. J. Electrochem. Sci. 10 (2015) 8175-8189.
  5. S. N. Eliseeva, O. V. Levin, E. G. Tolstopyatova, E. V. Alekseeva, V. V. Kondratiev Effect of Addition of a Conducting Polymer on the Properties of the LiFePO4-based Cathode Material for Lithium-Ion Batteries // Russ. J. Applied Chem. 88 (2015) 1146-1149.
  6. E.G. Tolstopjatova, S.N. Eliseeva, A.O. Nizhegorodova, V.V. Kondratiev Electrochemical Properties of Composite Electrodes, Prepared by Spontaneous Deposition of Manganese Oxide into Poly-3,4-ethylendioxythiophene // Electrochimica Acta 173 (2015) 40-49.