Laser Chemistry and Laser Material Sciences

Laser synthesis

Scientific interest is laser chemistry and materials science. Team of prof. Manshina proposed the idea and developed the scientific basis for creating complex multiphase nanomaterials by laser-induced self-organization processes. The novel approach is a one-step process based on the effect of laser irradiation at substrate/solution interface, resulting in the formation of hybrid nanostructures (metallic particles embedded in a carbonaceous matrix) of well-defined composition, morphology and structure on the surfaces of any type — transparent or opaque for laser radiation 2D or 3D substrates of any topology. The functionality of the deposited structures is changing from surface-enhanced Raman scattering, sensing technologies, to electro-catalysis and manipulation of light at the nanoscale thanks to variation of properties of the nanohybrids (composition, morphology and structure).

Team

Team leader

Manshina AA

Prof., Dr.Sc. Alina Manshina

This email address is being protected from spambots. You need JavaScript enabled to view it.


Team

lhlm Mamonova DV

Mamonova Daria Vladimirovna

PhD, postdoc

This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.

lhlm Vasileva AA

Vasileva Anna Alekseevna

PhD, junior researcher

This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.

Shmalko Aleksandr Vasilevich

Shmalko Alexandr

PhD student

This email address is being protected from spambots. You need JavaScript enabled to view it.

Bikbaeva Guliya Ilnurovna

Bikbaeva Guliia Ilnurovna

undergraduate student

This email address is being protected from spambots. You need JavaScript enabled to view it.

Zaharov Aleksey Pavlovich

Zaharov Alexey

PhD student

This email address is being protected from spambots. You need JavaScript enabled to view it. | This email address is being protected from spambots. You need JavaScript enabled to view it.

lhlm Hayrullina EM

Khayrullina Evgeniia

junior researcher

This email address is being protected from spambots. You need JavaScript enabled to view it.

Levshakova Aleksandra

Levshakova Alexandra

engineer researcher

This email address is being protected from spambots. You need JavaScript enabled to view it.

lhlm Medvedev VA

Medvedev Vassily Andreevich

PhD student

This email address is being protected from spambots. You need JavaScript enabled to view it.

Korolyova Anastasiya Vitalevna

Koroleva Anastasia

student

This email address is being protected from spambots. You need JavaScript enabled to view it.

Ninayan Ruzanna Gryachevna

Ninayan Ruzanna

student

This email address is being protected from spambots. You need JavaScript enabled to view it.

Nurlibaeva Altinjzan Birjzankizi

Nurlybaeva Altynzhan

student

This email address is being protected from spambots. You need JavaScript enabled to view it.

lhlm Lyusya

Luci

HR manager

To join the group please contact This email address is being protected from spambots. You need JavaScript enabled to view it.


In collaboration with

Laser synthesis of nanostructures and nanomaterials

Laser-induced deposition

Laser radiation is a unique tool for controlling various processes. A particularly interesting and promising area of modern science is the use of lasers to initiate chemical reactions. The result of such laser-induced chemical reactions is the production of new objects - nanostructures and nanomaterials that cannot be synthesized using “classical” chemistry.

Members of the Laser Synthesis group have developed a unique technique that makes it possible to synthesize amorphous and crystalline nanomaterials - from mono- and multimetallic systems to hybrid metal-carbon objects.

By precisely adjusting the parameters of laser radiation - wavelength, intensity, pulse duration, spatial localization of the laser beam, it is possible to controle the properties of synthesized objects, and, therefore, their areas of application.

The materials we synthesize are extremely in demand in sensor applications, ecology, biomedicine, electrocatalysis, etc.

rgman01

Scheme of the process of laser-induced deposition of nanostructures. Nanostructures are formed in the area of laser exposure - the so-called laser nanoreactor (highlighted in green)

rgman02

Examples of structures fabricated with laser synthesis


Laser-induced synthesis of nanostructures and nanomaterials for SERS

Laser induced deposition allows creation of substrates with Ag, Au, Au/Ag nanostructures with excellent SERS properties. We demonstrated SERS properties of various types of substrates laser-decorated with Ag, Au nanoparticles and nanofibers for wide list of analytes – classical dyes, organotin compounds, anthracene, Human Serum Albumin, Amyloid-β (Aβ) peptide, etc.

rgman08rgman09

Figure shows Ag nanofibers with broadband SERS response and mapping of EF enhancement @ 532, 632 nm (From article “Just laser irradiation of silver benzoate water solution — A direct way of Ag nanofibers synthesis for broadband SERS detection” Nano-Structures & Nano-Objects, 2023, V 36, 101037).


Laser-induced synthesis of nanostructures and nanomaterials for controlling light at the nanoscale

rgman03Thanks to the laser-induced deposition technique we developed, we are able to create unique structures that make it possible to control the properties of light at the nanolevel. Research in this area is the main trend of modern nanophotonics and the development of communication systems of the future. Figure (a, c) shows nanostructures - flakes, which are a hybrid material - a combination of crystalline carbon with embedded metal nanoparticles. Such flakes exhibit birefringence, a rare property for objects of this type. Another example is periodic plasmonic gratings, which are periodically arranged arrays of Ag nanoparticles (Figure b, d). Such structures have plasmonic properties that can be controlled over a wide spectral range, and therefore are of interest for any nanophotonics and optics devices.


Electrocatalysis - fuel cells, current sources (Ag, Pt, Au–Ag NPs)

The laser-induced deposition technique allows us to create electrodes with a highly developed surface and high electrocatalytic activity and develop miniature power sources based on them, for example, for pacemakers. Such sources of energy can be obtained from glucose in the blood. The figure shows nanomembranes with embedded nanoparticles of catalytically active metals. Such structures were obtained thanks to our developments.

rgman04rgman05

Unique luminescence nanomarkers

High Capacity Spectral Coding Systems and Unique ID Markers

rgman06Members of the Laser Synthesis group have developed a method for the synthesis of weakly agglomerated oxide nanoparticles doped with rare earth ions. Based on the obtained nanoparticles, a spectral coding system has been developed, which has practically unlimited information capacity and can be used as a much more functional alternative to barcodes and QR codes. The group continues research to develop this area and expand the options for using the coding system. The figure shows an example of laser marking of metal products and the introduction of luminescent nanomarks with a unique spectral code.

Photopharmacology

Laser control of the biological activity of promising medicinal compounds

We are also working on the creation of “smart drugs” with the ability to control the area, duration and value of their therapeutic effect. The biological activity is controlled by laser exposure. Substances with such properties are extremely in demand in photopharmacology. We have conducted successful experiments to create and study substances with biological activity and the ability to turn on or turn off bioactivity by laser irradiation. The biological activity of photopharmacological agents can be controlled thanks to laser-induced conformational change. The introduction of “smart drugs” into medical practice will make it possible in the future to solve the problem of uncontrolled drug activity in time and space (including outside the body), which leads to side effects and negative effects on healthy organs, as well as the accumulation of biologically active substances in the environment.

rgman07GA for our article “Laser-induced twisting of phosphorus functionalized thiazolotriazole as a way of cholinesterase activity change” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 246 (2021) 118979

Laser methods of microfabrication

Deep eutectic solvents for the formation of metal and composite micropatterns under laser radiation

This project appeared as part of the joint work of the Department of Laser Chemistry and Analytical Chemistry. The work demonstrates the possibility of laser deposition of copper on dielectric substrates using new solvents - deep eutectic solvents. This made it possible to increase the deposition rate by more than 150 times and significantly simplify the procedure.

rgtumkin01

Drawing by Vladimir Sosnovsky

The proposed technology is extremely promising for the rapid fabrication of conductive metal materials for multi-purpose applications and can successfully compete with other known laser-assisted technologies such as laser sintering and LIFT. In the future, it is planned to study the possibility of synthesizing polymetallic and composite materials based on copper and other metals, including nickel, chromium, cobalt and zinc.

rgtumkin02rgtumkin03


Laser-induced deposition of transition (Cu, Ni, Co) and noble (Au, Ag, Ru, Ir, Pt) metals from aqueous and organometallic complexes

Work is being carried out on laser-induced deposition of metals from aqueous and organic complexes. Using laser-induced synthesis, micropatterns based on noble metals (Ru, Ir, Pt) have been obtained from solution, and the surface of electrodes has also been modified to produce electrocatalytically active materials and sensor platforms.

rgtumkin04rgtumkin05rgtumkin06


Surface selective metallization of polymer materials to create flexible, customizable sensor platforms for the detection of bioanalytes

(In cooperatopn with with Dr. Karolis Ratautas and Prof. Gediminas Raciukaitis from 3D Technologies and Robotics Laboratory, Center for Physical Sciences and Technology) This direction is devoted to laser methods for the synthesis and modification of electrode materials to create enzyme-free sensor platforms on the surface of polymers. Wearable sensor platforms, including electrochemical ones, have recently attracted great attention in the academic community, both in the development of new materials and synthetic approaches, and from the point of view of the engineering challenges of creating this type of device and integrating their individual functional elements.

rgtumkin07rgtumkin08

Selective chemical (and electrochemical) modification of microelectrodes obtained using a two-stage laser method. This approach will make it possible to create sensor material for further detection of various analytes, including glucose, neurotransmitters, amino acids, etc.

rgtumkin09rgtumkin10


Selective laser sintering for creating microelectronic elements and sensor platforms for detecting target analytes

(In cooperation with Prof. Mizoshiri) This area of research is being carried out within the framework of a project by the Russian Foundation for Basic Research and the Japan Society for the Promotion of Science. The project is “Method of laser “direct writing” of metal and composite patterns for creating microdevices on flexible polymer substrates.”

rgtumkin11

In this project, the method of Selective Laser Sintering is used to synthesize materials based on copper, nickel and cobalt on the surface of glass, glass ceramics, and polymer materials. The synthesized materials can be used as flexible conductors or microelectrodes, and can also be used as thermoelectric elements.

Publications

2023

  1. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids Eremina, O. E., Yarenkov, N. R., Bikbaeva, G. I., Kapitanova, O. O., Samodelova, M. V., Shekhovtsova, T. N., Kolesnikov, I. E., Syuy, A. V., Arsenin, A. V., Volkov, V. S., Tselikov, G. I., Novikov, S. M., Manshina, A. A. & Veselova, I. A., 1 Jan 2024, в: Talanta. 266, 1, 124970.
  2. Water-Induced Changes in Choline Chloride-Carboxylic Acid Deep Eutectic Solvents properties Ninayan, R., Levshakova, A. S., Khairullina, E. M., Vezo, O. S., Tumkin, I. I., Ostendorf, A., Logunov, L. S., Manshina, A. A. & Shishov, A. Y., 1 Dec 2023, в: Colloids and Surfaces A: Physicochemical and Engineering Aspects. 679, 132543.
  3. Simultaneous catechol and hydroquinone detection with laser fabricated MOF-derived Cu-CuO@C composite electrochemical sensor Aleksandra Levshakova , Maria Kaneva, Evgenii Borisov , Maxim Panov, Alexandr Shmalko , Nikolai Nedelko, Andrey S. Mereshchenko, Mikhail Skripkin, Alina Manshina and Evgeniia Khairullina,: Materials. 16, 22, 13 p., 7225.
  4. Single vs. mutliparametric luminescence thermometry: the case of Eu3+-doped Ba3(VO4)2 nanophosphors Kolesnikov, I. E., Mamonova, D. V., Kurochkin, M. A., Khodasevich, M. A., Medvedev, V. A., Kolesnikov, E. Y. & Manshina, A. A., 1 ноя 2023, в: Journal of Materials Chemistry C. 11, 42, p. 14814-14825
  5. Just laser irradiation of silver benzoate water solution — A direct way of Ag nanofibers synthesis for broadband SERS detection Bikbaeva, G., Belhadi, A., Pankin, D., Mamonova, D., Kolesnikov, I., Petrov, Y., Ivanova, T., Ivanov, D. & Manshina, A., 1окт 2023, в: Nano-Structures and Nano-Objects. 36, 101037.
  6. All-in-One Photoactivated Inhibition of Butyrylcholinesterase Combined with Luminescence as an Activation and Localization Indicator: Carbon Quantum Dots@Phosphonate Hybrids Bikbaeva, G., Pilip, A., Egorova, A., Kolesnikov, I., Pankin, D., Laptinskiy, K., Vervald, A., Dolenko, T., Leuchs, G. & Manshina, A., 25 Avg 2023, Nanomaterials. 13, 17, 2409.
  7. Vinyl phosphonates as photopharmacological agents – laser induced cis‐trans isomerization and butyrylcholinesterase activity Bikbaeva, G., Egorova, A., Sonin, N., Pilip, A., Kolesnikov, I., Pankin, D., Boroznjak, R. & Manshina, A., 2023 ChemPhotoChem. e202300131.
  8. 3D Nanocomposite with High Aspect Ratio Based on Polyaniline Decorated with Silver NPs: Synthesis and Application as Electrochemical Glucose Sensor Vasileva, A. A., Mamonova, D. V., Mikhailovskii, V., Petrov, Y. V., Toropova, Y. G., Kolesnikov, I. E., Leuchs, G. & Manshina, A. A., 2023, Nanomaterials. 13, 6, 1002.
  9. Laser Technologies in Metal-Based Materials Manshina, A. A. (edition), 2023, MDPI AG.

2022

  1. Single step laser-induced deposition of plasmonic au, ag, pt mono-, bi-and tri-metallic nanoparticles Mamonova, D. V., Vasileva, A. A., Petrov, Y. V., Koroleva, A. V., Danilov, D. V., Kolesnikov, I. E., Bikbaeva, G. I., Bachmann, J. & Manshina, A. A., 1 Jan 2022, Nanomaterials. 12, 1, 146.
  2. Laser-Induced Synthesis of Electrocatalytically Active Ag, Pt, and AgPt/Polyaniline Nanocomposites for Hydrogen Evolution Reactions Vasileva, A. A., Mamonova, D. V., Petrov, Y. V., Kolesnikov, I. E., Leuchs, G. & Manshina, A. A., 24 дек 2022, Nanomaterials. 13, 1, 88.
  3. Photocured Organofunctional Silicon-Based Polymer and Its Y2O3 Nanocomposite as the Luminescence Tracer of Thermal History Dmitrii V. Pankin, , Daria V. Mamonova, Ilya Mongilyov, Alina A. Manshina, and Regina M. Islamova, 2022, ACS Applied Polymer Materials. 4, 11, p. 8357–8364, 8 pp.
  4. Photoswitchable Phosphonate–Fullerene Hybrids with Cholinesterase Activity Kolesnikov, I., Mamonova, D., Pankin, D., Bikbaeva, G., Khokhlova, A., Pilip, A., Egorova, A., Zigel, V. & Manshina, A., 17 Sept 2022, Photochemistry and Photobiology.
  5. Laser-assisted surface activation for fabrication of flexible non-enzymatic Cu-based sensors Khairullina, E. M., Ratautas, K., Panov, M. S., Andriianov, V. S., Mickus, S., Manshina, A. A., Račiukaitis, G. & Tumkin, I. I. 2022, Microchimica Acta. 189, 7, 259.
  6. Extreme Concentration and Nanoscale Interaction of Light Leuchs, G., Andrianov, A. V., Anashkina, E. A., Manshina, A. A., Banzer, P. & Sondermann, M., 15 июн 2022, в: ACS Photonics. 9, 6, p. 1842–1851, 10 pp.
  7. Multifunctional Gd2O3:Tm3+, Er3+, Nd3+ particles with luminescent and magnetic properties Shubina, I. M., Kolesnikov, I. E., Olshin, P. K., Likholetova, M. V., Mikhailov, M. D., Manshina, A. A. & Mamonova, D. V., 1 Jun 2022, Ceramics International. 48, 11, p. 15832-15838, 7 pp.
  8. Photoluminescence and Energy Transfer in Double-and Triple-Lanthanide-Doped YVO4 Nanoparticles Medvedev, V. A., Kolesnikov, I. E., Olshin, P. K., Mikhailov, M. D., Manshina, A. A. & Mamonova, D. V., 3 апр 2022, Materials. 15, 7, 2637.
  9. Synthesis of weakly-agglomerated luminescent CaWO4:Nd3+ particles by modified Pechini method Medvedev, V. A., Shubina, I. M., Kolesnikov, I. E., Lähderanta, E., Mikhailov, M. D., Manshina, A. A. & Mamonova, D. V., 15 Feb 2022, Ceramics International. 48, 4, p. 5100-5106, 7 pp.
  10. Single step laser-induced deposition of plasmonic au, ag, pt mono-, bi-and tri-metallic nanoparticles Mamonova, D. V., Vasileva, A. A., Petrov, Y. V., Koroleva, A. V., Danilov, D. V., Kolesnikov, I. E., Bikbaeva, G. I., Bachmann, J. & Manshina, A. A., 1 янв 2022, в: Nanomaterials. 12, 1, 20 p., 146.
  11. Synthesis of a New Series of β-Chloro-β-phenylvinylphosphonic Acid Chloride Derivatives, 2022, Russian Journal of General Chemistry. 92 , p. 2191–2196. doi: 10.1134/S1070363222100322.

2021

  1. In situmicrosynthesis of polyaniline: synthesis-structure-conductivity correlation Vasileva, A., Pankin, D., Mikhailovskii, V., Kolesnikov, I., Mínguez-Bacho, I., Bachmann, J. & Manshina, A., 21 сен 2021, в: New Journal of Chemistry. 45, 35, стр. 15968-15976 9 стр.
  2. Laser-induced switching of the biological activity of phosphonate molecules Kolesnikov, I., Khokhlova, A., Pankin, D., Pilip, A., Egorova, A., Zigel, V., Gureev, M., Leuchs, G. & Manshina, A., 14 сен 2021, в: New Journal of Chemistry. 45, 34, стр. 15195-15199 5 стр.
  3. A Self-Ordered Nanostructured Transparent Electrode of High Structural Quality and Corresponding Functional Performance Döhler, D., Triana, A., Büttner, P., Scheler, F., Goerlitzer, E. S. A., Harrer, J., Vasileva, A., Metwalli, E., Gruber, W., Unruh, T., Manshina, A., Vogel, N., Bachmann, J. & Mínguez-Bacho, I., 4 апр 2021, (Электронная публикация перед печатью) в: Small.
  4. Laser-induced twisting of phosphorus functionalized thiazolotriazole as a way of cholinesterase activity change Pankin, D., Khokhlova, A., Kolesnikov, I., Vasileva, A., Pilip, A., Egorova, A., Erkhitueva, E., Zigel, V., Gureev, M. & Manshina, A., 5 фев 2021, в: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 246, 118979.
  5. Structural features of functional polysiloxanes radical and ionic photo-curing for laser printing applications Talianov, P. M., Rzhevskii, S. S., Pankin, D. V., Deriabin, K. V., Islamova, R. M. & Manshina, A. A., фев 2021, в: Journal of Polymer Research. 28, 2, 37.
  6. Spectral properties of triphenyltin chloride toxin and its detectivity by SERS: Theory and experiment Pankin, D., Martynova, N., Smirnov, M. & Manshina, A., 15 янв 2021, в: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 245, 10 стр., 118933.
  7. Laser-induced deposition of plasmonic Ag and Pt nanoparticles, and periodic arrays Mamonova, D. V., Vasileva, A. A., Petrov, Y. V., Danilov, D. V., Kolesnikov, I. E., Kalinichev, A. A., Bachmann, J. & Manshina, A. A., 1 янв 2021, в: Materials. 14, 1, 14 стр., 10.
  8. Preface Yamanouchi, K., Manshina, A. A. & Makarov, V. A., 2021, Progress in Photon Science. Yamanouchi, K., Manshina, A. A. & Makarov, V. A. (ред.). стр. v-vii (Springer Series in Chemical Physics; том 125).
  9. Rare Earth Ion Based Luminescence Thermometry Kolesnikov, I. & Manshina, A., 2021, Progress in Photon Science. Springer Nature, стр. 69-94 26 стр. (Springer Series in Chemical Physics; том 125).
  10. Synthesis of weakly-agglomerated luminescent CaWO4:Nd3+ particles by modified Pechini method Мамонова, Д. В., Колесников, И. Е., Медведев, В. А., Шубина, И. М., Михайлов, М. Д., Lähderanta, E. & Маньшина, А. А., 2021, (Электронная публикация перед печатью) в: Ceramics International.
  11. YVO4 Nanoparticles Doped with Eu3+and Nd3+for Optical Nanothermometry Kolesnikov, I. E., Mamonova, D. V., Kurochkin, M. A., Kolesnikov, E. Y., Lähderanta, E. & Manshina, A. A., 2021, в: ACS Applied Nano Materials. 4, 11, стр. 12481–12489

2020

  1. Direct laser-induced deposition of AgPt@C nanoparticles on 2D and 3D substrates for electrocatalytic glucose oxidation Vasileva, A., Haschke, S., Mikhailovskii, V., Gitlina, A., Bachmann, J. & Manshina, A., окт 2020, в: Nano-Structures and Nano-Objects. 100547.
  2. Synthesis and luminescence properties of YVO4: Nd3+, Er3+ and Tm3+ nanoparticles Medvedev, V. A., Mamonova, D. V., Kolesnikov, I. E., Khokhlova, A. R., Mikhailov, M. D. & Manshina, A. A., авг 2020, в: Inorganic Chemistry Communications. 118, 6 стр., 107990.
  3. Hybrid Orthorhombic Carbon Flakes Intercalated with Bimetallic Au-Ag Nanoclusters: Influence of Synthesis Parameters on Optical Properties Butt, M. A., Mamonova, D., Petrov, Y., Proklova, A., Kritchenkov, I., Manshina, A., Banzer, P. & Leuchs, G., 15 июл 2020, в: Nanomaterials. 10, 7, 1376.
  4. Photosensitive Poly-l-lysine/Heparin Interpolyelectrolyte Complexes for Delivery of Genetic Drugs Korzhikov-Vlakh, V., Katernuk, I., Pilipenko, I., Lavrentieva, A., Guryanov, I., Sharoyko, V., Manshina, A. A. & Tennikova, T. B., 8 мая 2020, в: Polymers. 12, 5, 21 стр., 1077.
  5. Construction of efficient dual activating ratiometric YVO4:Nd3+/Eu3+ nanothermometers using co-doped and mixed phosphors Kolesnikov, I. E., Mamonova, D. V., Kalinichev, A. A., Kurochkin, M. A., Medvedev, V. A., Kolesnikov, E. Y., Lähderanta, E. & Manshina, A. A., 14 мар 2020, в: Nanoscale. 12, 10, стр. 5953-5960
  6. Tuning the Optical and Geometrical Properties of Hybrid Carbon Flakes by Fabrication Parameters Butt, M. A., Mamonova, D., Manshina, A. A., Banzer, P. & Leuchs, G., 2020, Novel Optical Materials and Applications, NOMA 2020. OSA - The Optical Society, (Optics InfoBase Conference Papers; том Part F186-NOMA 2020).

2019

  1. Plasmonic carbon nanohybrids from laser-induced deposition: controlled synthesis and SERS properties Povolotckaia, A., Pankin, D., Petrov, Y., Vasileva, A., Kolesnikov, I., Sarau, G., Christiansen, S., Leuchs, G. & Manshina, A., 15 июн 2019, в: Journal of Materials Science. 54, 11, стр. 8177-8186 10 стр.
  2. Investigating the Optical Properties of a Laser Induced 3D Self-Assembled Carbon–Metal Hybrid Structure Butt, M. A., Lesina, A. C., Neugebauer, M., Bauer, T., Ramunno, L., Vaccari, A., Berini, P., Petrov, Y., Danilov, D., Manshina, A., Banzer, P. & Leuchs, G., 3 мая 2019, в: Small. 15, 18, 9 стр., 1900512.
  3. Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability Haschke, S., Pankin, D., Mikhailovskii, V., Barr, M. K. S., Both-Engel, A., Manshina, A. & Bachmann, J., 11 янв 2019, в: Beilstein Journal of Nanotechnology. 10, 1, стр. 157-167 11 стр.
  4. Adjusting Interfacial Chemistry and Electronic Properties of Photovoltaics Based on a Highly Pure Sb2S3 Absorber by Atomic Layer Deposition Büttner, P., Scheler, F., Pointer, C., Döhler, D., Barr, M. K. S., Koroleva, A., Pankin, D., Hatada, R., Flege, S., Manshina, A., Young, E. R., Mínguez-Bacho, I. & Bachmann, J., 1 янв 2019, (Принято в печать) в: ACS Applied Energy Materials. 2, 12, стр. 8747-8756
  5. Laser-induced deposition of metal and hybrid metal-carbon nanostructures Manshina, A., 1 янв 2019, Springer Series in Chemical Physics. Springer Nature, стр. 387-403 17 стр. (Springer Series in Chemical Physics; том 119).

2018

  1. 2D Carbon Allotrope with Incorporated Au-Ag Nanoclusters - Laser-Induced Synthesis and Optical Characterization Manshina, A., Petrov, Y., Kolesnikov, I., Mitetelo, N. V., Murzina, T. V., Butt, M. A., Neugebauer, M., Banzer, P. & Leuchs, G., 2 июл 2018, Conference on Lasers and Electro-Optics/Pacific Rim, CLEOPR 2018. OSA - The Optical Society, 8699521. (Optics InfoBase Conference Papers; том Part F113-CLEOPR 2018).
  2. Highly Reversible Water Oxidation at Ordered Nanoporous Iridium Electrodes Based on an Original Atomic Layer Deposition Schlicht, S., Haschke, S., Mikhailovskii, V., Manshina, A. & Bachmann, J., 1 мая 2018, в: ChemElectroChem. 5, 9, стр. 1259-1264 6 стр.
  3. In-situ laser-induced synthesis of associated YVO4: Eu3+@ SiO2@ Au-Ag/C nanohybrids with enhanced luminescence Kolesnikov, I. E., lvanova, T. Y., Ivanov, D. A., Kireev, A. A., Mamonova, D. V., Golyeva, E. V., Mikhailov, M. D. & Manshina, A. A., 1 фев 2018, в: Journal of Solid State Chemistry. 258, стр. 835-840 6 стр.
  4. Investigating the optical properties of a novel 3D self- assembled metamaterial made of carbon intercalated with bimetal nanoparticles Butt, M. A., Neugebauer, M., Lesina, A. C., Ramunno, L., Berini, P., Vaccari, A., Bauer, T., Manshina, A. A., Banzer, P. & Leuchs, G., 1 янв 2018, Novel Optical Materials and Applications, NOMA 2018. OSA - The Optical Society, Том Part F107-NOMA 2018.
  5. Laser-deposited hybrid Au-Ag@C nanoparticles as efficient SERS & adsorption material Vasileva, A. A., Pankin, D. V., Kolesnikov, I. E., Rzhevskiy, S. S. & Manshina, A. A., 2018, в: Journal of Physics: Conference Series. 1124, 5, 051029.
  6. New hybrid crystalline metal-carbon flakes with unusual optical properties Маньшина, А. А., 2018, Russian-German-French Laser Symposium.
  7. Raman fingerprints for unambiguous identification of organotin compounds Pankin, D., Kolesnikov, I., Vasileva, A., Pilip, A., Zigel, V. & Manshina, A., 2018, в: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 204, стр. 158-163 6 стр.
  8. ИЗУЧЕНИЕ ГЕМОСОВМЕСТИМОСТИ МАГНИТНЫХ НАНОЧАСТИЦ МАГНЕТИТА И КОМПОЗИТНЫХ ЧАСТИЦ МАГНЕТИТА-КРЕМНЕЗЕМА IN VITRO Toropova, Y. G., Pechnikova, N. A., Zelinskaya, I. A., Korolev, D. V., Gareev, K. G., Markitantova, A. S., Bogushevskaya, V. D., Povolotskaya, A. V. & Manshina, A. A., 2018, в: Bulletin of Siberian Medicine. 17, 3, стр. 157-167 11 стр.

2017

  1. Design Rules for Oxygen Evolution Catalysis at Porous Iron Oxide Electrodes: A 1000-Fold Current Density Increase Haschke, S., Pankin, D., Petrov, Y., Bochmann, S., Manshina, A. & Bachmann, J., 22 сен 2017, в: ChemSusChem. 10, 18, стр. 3644-3651 8 стр.
  2. Optic properties of niobium-phosphate glasses containing lithium, sodium, and potassium oxides Ol’shin, P. K., Povolotskii, A. V., Man’shina, A. A., Markov, V. A. & Sokolov, I. A., 1 июл 2017, в: Glass Physics and Chemistry. 43, 4, стр. 294-297 4 стр.
  3. Novel 2D carbon allotrope intercalated with Au-Ag nanoclusters: From laser design to functionality Manshina, A. A., Povolotskaya, A. V., Petrov, Y. V., Willinger, E., Willinger, M. G., Banzer, P. & Leuchs, G., 1 янв 2017, Advanced Photonics, NOMA 2017. OSA - The Optical Society, Том Part F55-NOMA 2017.
  4. A model electrode of well-defined geometry prepared by direct laser-induced decoration of nanoporous templates with Au-Ag@C nanoparticles Schlicht, S., Kireev, A., Vasileva, A., Grachova, E. V., Tunik, S. P., Manshina, A. A. & Bachmann, J., 2017, в: Nanotechnology. 28, 6
  5. Laser-inspired chemical transformations Manshina, A., 2017, Springer Series in Chemical Physics. Springer Nature, Том 115. стр. 243-251 9 стр. (Springer Series in Chemical Physics; том 115).
  6. Modified Pechini method for the synthesis of weakly-agglomerated nanocrystalline yttrium aluminum garnet (YAG) powders Мамонова, Д. В., Колесников, И. Е., Маньшина, А. А., Михайлов, М. Д. & Смирнов, В. М., 2017, в: Materials Chemistry and Physics. 189, стр. 245-251
  7. The luminescence properties of nanocrystalline phosphors Mg2SiO4:Eu3+ Kolomytsev, A. Y., Mamonova, D. V., Manshina, A. A. & Kolesnikov, I. E., 2017, в: Journal of Physics: Conference Series. 929, 1, 012068.

2016

  1. Laser-induced synthesis of nanostructured metal–carbon clusters and complexes Arakelian, S., Kutrovskaya, S., Kucherik, A., Osipov, A., Povolotckaia, A., Povolotskiy, A. & Manshina, A., 1 ноя 2016, в: Optical and Quantum Electronics. 48, 11, 505.
  2. Laser formation of the metal-carbon islands thin films for optical application Kucherik, A., Antipov, A., Arakelian, S., Kutrovskaya, S., Osipov, A., Vartanyan, T., Povolotckaia, A., Povolotskiy, A. & Manshina, A., 23 авг 2016, Proceedings - 2016 International Conference Laser Optics, LO 2016. Institute of Electrical and Electronics Engineers Inc., стр. R95 7549905. (Proceedings - 2016 International Conference Laser Optics, LO 2016).
  3. Laser-induced synthesis of metal–carbon materials for implementing surface-enhanced Raman scattering Kucherik, A., Arakelian, S., Vartanyan, T., Kutrovskaya, S., Osipov, A., Povolotskaya, A., Povolotskii, A. & Man’shina, A., 1 авг 2016, в: Optics and Spectroscopy (English translation of Optika i Spektroskopiya). 121, 2, стр. 263-270 8 стр.
  4. Direct laser synthesis of Ag nanoparticles from ammonia-alcoholic solutions of AgNO3 Маньшина, А. А., 2016, в: Acta Chimica Slovenica.
  5. Laser-induced synthesis of a nanostructured polymer-like metal-carbon complexes Arakelian, S., Kutrovskaya, S., Kucherik, A., Osipov, A., Povolotckaia, A., Povolotskiy, A. & Manshina, A., 2016, Nanophotonics VI. Nunzi, J-M., Andrews, D. L. & Ostendorf, A. (ред.). SPIE, 988425. (Proceedings of SPIE - The International Society for Optical Engineering; том 9884).
  6. Nanopowders of aluminum-magnesium spinel doped with europium(3+) ions: Synthesis by hydroxocarbonates coprecipitation and study of their physicochemical properties Маньшина, А. А., 2016, в: Russian Journal of General Chemistry.
  7. Photoluminescence properties of Eu3+ ions in yttrium oxide nanoparticles: defect vs. normal sites Колесников, И. Е., Поволоцкий, А. В., Мамонова, Д. В., Lahderanta, E., Маньшина, А. А. & Михайлов, М. Д., 2016, в: RSC Advances. 6, 80, стр. 76533-76541
  8. Spatially-controlled laser-induced decoration of 2D and 3D substrates with plasmonic nanoparticles Bashouti, M. Y., Povolotckaia, A. V., Povolotskiy, A. V., Tunik, S. P., Christiansen, S. H., Leuchs, G. & Manshina, A. A., 2016, в: RSC Advances. 6, 79, стр. 75681-75685 5 стр.

2015

  1. Annealing effect: Controlled modification of the structure, composition and plasmon resonance of hybrid Au-Ag/C nanostructures Manshina, A., Povolotskiy, A., Povolotckaia, A., Kireev, A., Petrov, Y. & Tunik, S., 2015, в: Applied Surface Science. 353, стр. 11-16
  2. Concentration effect on photoluminescence of Eu3+-doped nanocrystalline YVO4 Kolesnikov, I. E., Tolstikova, D. V., Kurochkin, A. V., Pulkin, S. A., Manshina, A. A. & Mikhailov, M. D., 2015, в: Journal of Luminescence. 158, стр. 469-473
  3. Concentration effect on structural and luminescent properties of YVO4:Nd3+ nanophosphors Kolesnikov, I. E., Tolstikova, D. V., Kurochkin, A. V., Platonova, N. V., Pulkin, S. A., Manshina, A. A. & Mikhailov, M. D., 2015, в: Materials Research Bulletin. 70, стр. 799-803
  4. Direct laser writing of μ-chips based on hybrid C-Au-Ag nanoparticles for express analysis of hazardous and biological substances Bashouti, M. Y., Manshina, A., Povolotckaia, A., Povolotskiy, A., Kireev, A., Petrov, Y., Ma kovi, M., Spiecker, E., Koshevoy, I., Tunik, S. & Christiansen, S., 2015, в: Lab on a Chip - Miniaturisation for Chemistry and Biology. 15, 7, стр. 1742-1747
  5. Hybrid nanostructures: synthesis, morphology and functional properties Povolotskaya, A. V., Povolotskiy, A. V. & Manshinab, A. A., 2015, в: Russian Chemical Reviews. 84, 6, стр. 579-600
  6. Laser-induced transformation of supramolecular complexes: a novel approach to control formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures for stable SERS substrates Manshina, A. A., Grachova, E. V., Povolotskiy, A. V., Povolotckaia, A. V., Petrov, Y. V., Koshevoy, I. O., Makarova, A. A., Vyalikh, D. V. & Tunik, S. P., 2015, в: Scientific Reports. 5, 12027.
  7. Luminescence of Y3Al5O12:Eu3+ nanophosphors in blood and organic media Kolesnikov, I. E., Povolotskiy, A. V., Tolstikova, D. V., Manshina, A. A. & Mikhailov, M. D., 2015, в: Journal of Physics D - Applied Physics. 48, 7, 6 стр., 075401.
  8. Structural features of silver-doped phosphate glasses in zone of ferntosecond laser-induced modification Vasileva, A. A., Nazarov, I. A., Olshin, P. K., Povolotskiy, A. V., Sokolov, I. A. & Manshina, A. A., 2015, в: Journal of Solid State Chemistry. 230, стр. 56-60 5 стр., 18952.
  9. Structure of lithium-niobium phosphate glass promising for optical phase elements creation with femtosecond laser radiation Manshina, A. A., Povolotskiy, A. V., Ol’shin, P. K., Vasileva, A. A., Markov, V. A. & Sokolov, I. A., 2015, в: Glass Physics and Chemistry. 41, 6, стр. 572-578 7 стр.
  10. The formation of optical phase structures in the volume of phosphate glasses by means of thermal diffusion caused by the action of femtosecond laser radiation Man'shina, A. A., Povolotskii, A. V. & Sokolov, I. A., 2015, в: Journal of Optical Technology (A Translation of Opticheskii Zhurnal). 82, 2, 7 стр.

2014

  1. Annealing effect on composition and functional properties of hybrid C-Au-Ag nanoparticles Manshina, A., Povolotskiy, A., Povolotskaya, A., Koshevoy, I. & Tunik, S., 2014, Source of the Document Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2014. стр. 424-427
  2. Eu3+ concentration effect on luminescence properties of YAG:Eu3+ nanoparticles Kolesnikov, I. E., Tolstikova, D. V., Kurochkin, A. V., Manshina, A. A. & Mikhailov, M. D., 2014, в: Optical Materials. 37, стр. 306-310
  3. Laser formation of collodial alloys of the noble nanoparticles and deposition of the microclusters on the glass substrate Kucherik, A., Antipov, A., Arakelian, S., Kutrovskaya, S., Khorkov, K., Povolotckaia, A., Povolotskiy, A. & Manshina, A., 2014, Proceedings - 2014 International Conference Laser Optics, LO 2014. стр. 6886356
  4. Laser-induced synthesis of hybrid C-Au-Ag nanostructures: Nanoparticles, nanoflakes, nanoflowers Manshina, A., Povolotskiy, A., Povolotskaya, A., Koshevoy, I. & Tunik, S., 2014, Source of the Document Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2014. стр. 381-384
  5. Waveguide fabrication in lfithium-niobo-phosphate glasses by high repetition rate femtosecond laser: route to non-equilibrium material’s states Dubov, M., Mezentsev, V., Manshina, A. A., Sokolov, I. A., Povolotskiy, A. V. & Petrov, Y. V., 2014, в: Optical Materials Express. 4, 6, стр. 1197-1206 10 стр.
  6. Исследование структурных и оптических особенностей литий-фосфатных стекол Ольшин, П. К., Киреев, А. А., Поволоцкий, А. В., Маньшина, А. А. & Соколов, И. А., 2014, в: СОВРЕМЕННЫЕ ПРОБЛЕМЫ НАУКИ И ОБРАЗОВАНИЯ. 5, стр. 803