Department of General and Inorganic Chemistry

High temperature chemistry of oxide systems and materials

Group members

Group leader

Valentina Leonidovna Stolyarova This email address is being protected from spambots. You need JavaScript enabled to view it. — Doctor of Chemistry, Corresponding member of the Russian Academy of Sciences, Professor, Department of General and Inorganic Chemistry SPBU.

Group members

  • Shilov Andrey Leonidovich This email address is being protected from spambots. You need JavaScript enabled to view it., Ph. Dr.; Dr. Technical Sciences, Aalto University, Finland
  • Vorozhtcov Victor Alekseevich This email address is being protected from spambots. You need JavaScript enabled to view it., Graduate student

Cooperation

  1. Scientific Group of High temperature mass spectrometry, Institute of Chemistry, Saint Petersburg State University;
  2. Division of High temperature chemistry of heterogeneous processes, Institute of Silicate Chemistry of the Russian Academy of Sciences;
  3. Laboratory of chemistry of light elements and clusters, The N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences;
  4. Research Group for Metallurgy, Department of Chemical and Metallurgical Engineering School of Chemical Engineering, Aalto University (Finland);
  5. Department of Materials Science and Engineering, The University of Sheffield (Great Britain);
  6. Institute of Materials Science, Freiberg University of Mining and Technology (Germany).
  7. Laboratory for Advanced Nuclear Energy, Department of Materials Science and Engineering, Tokyo Institute of Technology;
  8. Laboratory of engineering of optical fibers, The G.G. Devyatykh Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences;
  9. Nuclear Energy Agency, Organisation for Economic Co-operation and Development (OECD);
  10. Japan Atomic Energy Agency;
  11. Severe Accidents Research Department, FSUE "Alexandrov Research Institute of Technology" (NITI);
  12. Physical Chemistry Department, Faculty of Information Measurement and Biotechnical Systems, Institute of Fundamental Engineering Education, Saint Petersburg Electrotechnical University "LETI";
  13. Laboratory of the spectral, chemical analytical studies of standard samples, All-Russian Research Institute of Aviation Materials;
  14. Laboratory of the surface technology and protective coatings for the metallic materials, All-Russian Research Institute of Aviation Materials

Scientific area (concept)

  • Thermodynamic properties and vaporization processes of oxide systems and materials (glasses, ceramics and coatings) at high temperatures;
  • Modeling of thermodynamic properties of oxide systems: consideration of correlations with structure in obtaining of materials with the required properties;
  • Prediction of physicochemical properties of advanced materials at high temperatures.

Projects

  • Project № 20-33-90175, Russian Fund for Basic Research: «Thermodynamic properties of quatenary systems based on hafnium and rare earth oxides: calculation and experiment”, 2020–2022;
  • International project TCOFF (Thermodynamic Characterisation of Fuel Debris and Fission Products Based on Scenario Analysis of Severe Accident Progression at the Fukushima Daiichi Nuclear Power Station) Nuclear Energy Agency of Organization for Economic Cooperation and Development, 2018–2020;
  • Contract № 500067753, Organisation for Economic Co-operation and Development (OECD), Nuclear Energy Agency: “Vaporization and thermodynamics of Cs-bearing compounds in the Cs-Si-O, Cs-B-O, Cs-Mo-O, Cs-Cr-O, Cs-Fe-O systems studied by high temperature mass spectrometric method”, 2018–2019;
  • Project № 19-03-00721, Russian Fund for Basic Research: «Physical and chemical properties of ceramics based on ternary systems containing hafnia advanced for the development of the heat reflecting coatings of new generation», 2019–2021;
  • Project № 16-03-00940, Russian Fund for Basic Research: «High temperature study of ceramics based on hafnium and rare-earth oxides: thermodynamics and structure», 2016–2018;
  • Project № 13-03-00718, Russian Fund for Basic Research: «High-temperature study of physicochemical properties and structure of silicate glasses and melts containing bismuth oxide (III)», 2013–2015.

Publications

  1. Stolyarova V.L., Vorozhtcov V.A. High temperature study of oxide systems: thermal analysis and Knudsen effusion mass spectrometry. // Rus. J. Phys. Chem. A. 2020. V. 94. N 13. P. 17–24. https://doi.org/10.1134/S0036024420130257
  2. Stolyarova V.L., Vorozhtcov V.A., Shilov A.L., Sokolova T.V. Thermodynamic approach for prediction of oxide materials properties at high temperatures. // Pure and Applied Chemistry. 2020. V. 92. N 8. P. 1259–1264. https://doi.org/10.1515/pac-2019-1217
  3. Stolyarova V.L., Vorozhtcov V.A., Masaki K., Costa D. High‐temperature mass spectrometric study of thermodynamic properties in the UO2-ZrO2 system. // Rapid Commun. Mass Spectrom. 2020. V. 34. N 19. P. e8862. https://doi.org/10.1002/rcm.8862
  4. Shilov A. L., Stolyarova V. L., Vorozhtsov V. A., Lopatin S. I., Shugurov S. M. Optimization of the thermodynamic properties of the Sm2O3-Y2O3-HfO2 system at high temperatures by the Barker method. // Rus. J. Inorg. Chem. 2020. V. 65. N 5. P. 773–780. https://doi.org/10.1134/S0036023620050216
  5. Kablov E.N., Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Shugurov S.M., Shilov A.L., Karachevtsev F.N., Medvedev P.N. Vaporization and thermodynamics of ceramics in the Sm2O3-Y2O3-HfO2 system. // Rapid Commun. Mass Spectrom. 2020. V. 34. N 8. P. e8693. https://doi.org/10.1002/rcm.8693
  6. Stolyarova V.L., Vorozhtcov V.A., Shilov A.L., Lopatin S.I., Shugurov S.M. Ceramics based on the Sm2O3-Y2O3 and Sm2O3-HfO2 systems at high temperatures: Thermodynamics and modeling. // Materials Chem. Phys. 2020. V. 252. P. 123240. https://doi.org/10.1016/j.matchemphys.2020.123240
  7. Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Shugurov S.M. Samarium oxide at high temperatures: sublimation and thermodynamics. // Rus. J. Gen. Chem. 2020. V. 90. N 5. P. 874–876. https://doi.org/10.1134/S1070363220050199
  8. Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Ugolkov V.L. Simultaneous thermal analysis of samples in the Bi2O3-P2O5-SiO2 system: Comparison with the KEMS data. // Thermochim. Acta. 2020. V. 685. P. 178531. https://doi.org/10.1016/j.tca.2020.178531
  9. Stolyarova V.L. Review KEMS 2012 till 2017. // Calphad: Computer Coupling of Phase Diagrams and Thermochemistry. 2019. V. 64. P. 258–266.
  10. Vorozhtcov V.A., Stolyarova V.L., Chislov M.V., Zvereva I.A., Simonenko E.P., Simonenko N.P. Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies. // J. Mater. Research. 2019. V. 34. N 19. P. 3326–3336. https://doi.org/10.1557/jmr.2019.206
  11. Kablov E.N., Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Karachevtsev F.N. Vaporization and thermodynamics of ceramics in the Y2O3-ZrO2-HfO2 system. // Rapid Commun. Mass Spectrom. 2019. V. 33. N 19. P. 1537–1546. https://doi.org/10.1002/rcm.8501
  12. Kablov E.N., Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Karachevtsev F.N. Thermodynamics and vaporization of ceramics based on the Y2O3-ZrO2 system studied by KEMS. // J. Alloys Compd. 2019. V. 794. P. 606–614. https://doi.org/10.1016/j.jallcom.2019.04.208
  13. Shilov A.L., Stolyarova V.L., Lopatin S.I., Vorozhtcov V.A. Thermodynamic properties of the Gd2O3-Y2O3-HfO2 system studied by high temperature Knudsen effusion mass spectrometry and optimized using the Barker lattice theory. // J. Alloys Compd. 2019. V. 791. P. 1207–1212. https://doi.org/10.1016/J.JALLCOM.2019.03.182
  14. Vorozhtcov V.A., Shilov A.L., Stolyarova V.L. Features of thermodynamic description of properties of Gd2O3-Y2O3-HfO2 based ceramics. // Rus. J. Gen. Chem. 2019. V. 89. N 3. P. 475–479. https://doi.org/10.1134/S1070363219030186
  15. Shilov A.L., Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. Thermodynamic description of the Gd2O3-Y2O3-HfO2 and La2O3-Y2O3-HfO2 systems at high temperatures. // Calphad. 2019. V. 65. P. 165–170. https://doi.org/10.1016/J.CALPHAD.2019.03.0
  16. Folomeikin Yu.I., Karachevtsev F.N., Stolyarova V.L. Production of Ceramics based on the Y2O3-ZrO2-HfO2 System for Casting Molds. // Russ. J. Inorganic Chemistry. 2019. V. 64. № 7. P. 934–940. doi: 10.1134/S0036023619070088
  17. Shilov A.L., Stolyar S.V., Stolyarova V.L., Ojovan M.I. The viscosity of Bi2O3-B2O3-SiO2 glasses and melts. // Glass Technol.: Eur. J. Glass Sci. Technol. A. 2019. V. 60. N 4. P. 105–110. doi: 10.13036/17533546.60.4.016.
  18. Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Stolyarova V.L., Lopatin S.I., Vorozhtcov V.A., Kuznetsov N.T. Synthesis, vaporization and thermodynamic properties of superfine yttrium aluminum garnet. // J. Alloys Compd. 2018. V. 764. P. 397–405. https://doi.org/10.1016/J.JALLCOM.2018.06.060
  19. Kablov E.N., Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Fabrichnaya O.В., Ilatovskaya M.O., Karachevtsev F.N. Vaporization and thermodynamics of ceramics based on the La2O3-Y2O3-HfO2 system studied by the high-temperature mass spectrometric method. // Rapid Commun. Mass Spectrom. 2018. V. 32. N 9. P. 686–694. https://doi.org/10.1002/rcm.8081
  20. Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Shilov A.L. Thermodynamic properties of the La2O3-HfO2 system at high temperatures. // Thermochim. Acta. 2018. V. 668. P. 87–95. https://doi.org/10.1016/J.TCA.2018.08.014
  21. Vorozhtcov V.A., Stolyarova V.L., Lopatin S.I., Simonenko E.P., Simonenko N.P., Sakharov K.A., Sevastyanov V.G., Kuznetsov N.T. Vaporization and thermodynamic properties of lanthanum hafnate. // J. Alloys Compd. 2018. V. 735. P. 2348–2355. https://doi.org/10.1016/J.JALLCOM.2017.11.319
  22. Stolyarova V.L. Vaporization and thermodynamics of glasses and glass-forming melts in ternary oxide systems. // Applied Solid State Chemistry. 2017. N 1. P. 26–30.
  23. Kablov E.N., Stolyarova V.L., Lopatin S.I., Vorozhtcov V.A., Karachevtsev F.N., Folomeikin Y.I. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties in the Gd2O3-Y2O3-HfO2 system. // Rapid Commun. Mass Spectrom. 2017. V. 31. N 13. P. 1137–1146. https://doi.org/10.1002/rcm.7892
  24. Kablov E.N., Stolyarova V.L., Lopatin S.I., Vorozhtcov V.A., Karachevtsev F.N., Folomeikin Y.I. Mass spectrometric study of thermodynamic properties in the Gd2O3-Y2O3 system at high temperatures. // Rapid Commun. Mass Spectrom. 2017. V. 31. N 6. P. 538–546. https://doi.org/10.1002/rcm.7809
  25. Vorozhtcov V.A., Stolyarova V.L., Lopatin S.I., Shugurov S.M., Shilov A.L., Sapega V.F. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties of samples in the Bi2O3-P2O5-SiO2 system. // Rapid Commun. Mass Spectrom. 2017. V. 31. N 1. P. 111–120. https://doi.org/10.1002/rcm.7764
  26. Stolyarova V.L. Design and physicochemical investigations of new materials at the Saint Petersburg State University. // Russ. Chem. Rev. 2016. V. 85. N 1. P. 01–02.
  27. Stolyarova V.L. Mass spectrometric thermodynamic studies of oxide systems and materials. // Russ. Chem. Rev. 2016. V. 85. N 1. P. 60-80.
  28. Kablov E.N., Folomeikin Yu.I., Stolyarova V.L., Lopatin S.I. Reactions of niobium silicide melt with refractory ceramics. // Russ. J. General Chemistry. 2016. V. 86. N 9. P. 2105–2108.